Statistical properties of spectral fluctuations for a quantum system with infinitely many components.

نویسندگان

  • H Makino
  • N Minami
  • S Tasaki
چکیده

Extending the idea formulated in Makino [Phys. Rev. E 67, 066205 (2003)], that is based on the Berry-Robnik approach [M. V. Berry and M. Robnik, J. Phys. A 17, 2413 (1984)], we investigate the statistical properties of a two-point spectral correlation for a classically integrable quantum system. The eigenenergy sequence of this system is regarded as a superposition of infinitely many independent components in the semiclassical limit. We derive the level number variance (LNV) in the limit of infinitely many components and discuss its deviations from Poisson statistics. The slope of the limiting LNV is found to be larger than that of Poisson statistics when the individual components have a certain accumulation. This property agrees with the result from the semiclassical periodic-orbit theory that is applied to a system with degenerate torus actions [D. Biswas, M. Azam, and S. V. Lawande, Phys. Rev. A 43, 5694 (1991)].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion

In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...

متن کامل

Spectral statistics in noninteracting many-particle systems.

It is widely accepted that the statistical properties of energy level spectra provide an essential characterization of quantum chaos. Indeed, the spectral fluctuations of many different systems like quantum billiards, atoms, or atomic nuclei have been studied. However, noninteracting many-body systems have received little attention, since it is assumed that they must exhibit Poisson-like fluctu...

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

بررسی ویژگیهای قدرت خط و نیروی نوسانگر اتمهای نقره و طلا با استفاده از نظریه تقریب کولنی

  Single-valence electron atoms are an important class of atoms. Their oscillator strengths are their important properties. Knowing the oscillator strengths one can easity calculate the transition probabilities of the spectral lines and hence the lifetimes of energy levels of most atoms. The oscillator strengths of the spectral lines of most atoms are not knoen with sufficient accuracy due to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 79 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009